烧结钕铁硼永磁材料的牌号由主称贺2种磁特性三部分组成,部分为主称,由钕元素的化学符号ND,铁元素的化学符号FE和硼元素的化学符号B组成,第二部分为线前的数字,是材料磁能积(BH)max的标称值(单位为kj/m),第三部分为斜线后的数字,磁极化强度矫顽力值(单位为KA/m)的十分之一,数值采用四舍五入取整。
随着社会的发展,磁铁的应用也越来越广泛,从高科技产品到简单的包装磁,目前应用为广泛的还是钕铁硼强磁和铁氧体磁铁。
从永磁材料的发展历史来看,十九世纪末使用的碳钢,磁能积(BH)max(衡量永磁体储存磁能密度的物理量)不足1MGOe(兆高奥),而目前国外批量生产的Nd-Fe-B永磁材料,磁能积已达50MGOe以上。这一个世纪以来,材料的剩磁Br提高甚小,能积的提高要归功于矫顽力Hc的提高。而矫顽力的提高,主要得益于对其本质的认识和高磁晶各向异性化合物的发现,以及制备技术的进步。二十世纪初,人们主要使用碳钢、钨钢、铬钢和钴钢作永磁材料。二十世纪三十年代末,AlNiCo永磁材料开发成功,才使永磁材料的大规模应用成为可能。五十年代,钡铁氧体的出现,既降低了永磁体成本,又将永磁材料的应用范围拓宽到高频领域。到六十年代,稀土钴永磁的出现,则为永磁体的应用开辟了一个新时代。
磁芯大战的玩法是游戏双方各写一套程序,输入同一部电脑中,这两套程序在电脑的存储系统内互相追杀。因为它们都在电脑的存储磁芯中运行,因此得到了磁芯大战之名。这个游戏的特点在于双方的程序进入电脑之后,玩游戏的人只能看着屏幕上显示的战况,而不能做任何更改,一直到某一方的程序被另一方的程序完全“吃掉”为止,所以磁芯大战只能算是程序员们的一个玩具。由于用于游戏的程序具有很强的破坏性,因此长久以来,懂得玩“磁芯大战”的人都严守一项不成文的规定:不对大众公开这些程序的内容。然而1983年,这项规定被打破了。科恩·汤普逊在当年一项杰出电脑奖得奖人颁奖典礼上,作了一个演讲,不但公开证实了电脑病毒的存在,而且还告诉所有听众怎样去写自己的病毒程序。他的同行全都吓坏了,然而这个秘密已经流传出去了。1984年,情况更复杂了。这一年,《科学美国人》月刊的专栏作家在5月刊写了篇讨论磁芯大战的文章,并且只要寄上两美元,任何读者都可以收到有关如何编写程序的提纲,在自己家的电脑中开辟战场。就这样,潘多拉之盒被打开了,许多程序员都了解了病毒的原理,进而开始尝试编制这种具有隐蔽性、攻击性和传染性的特殊程序。到了今天,电脑病毒已经成为了电脑世界的瘟疫。磁芯大战的作者们万万不会想到:它们的玩具竟然会给世界带来如此大的麻烦。
为 了满足开关电源提率和减小尺寸、重量的要求,需要一种高磁通密度和高频低损耗的变压器磁芯。虽然有高性能的非晶态软磁合金竞争,但从性能价格比考虑,软磁铁氧体材料仍是的选择;特别在100kHz到1MHz的高频领域,新的低损耗的高频功率铁氧体材料更有其独特的优势。为了限度地利用磁芯,对于较大功率运行条件下的软磁铁氧体材料,在高温工作范围(如80~100℃),应具有以下主要的磁特性:
1)高的饱和磁通密度或高的振幅磁导率。这样变压器磁芯在规定频率下允许有一个大的磁通偏移,其结果可减少匝数;这也有利于铁氧体的高频应用,因为截止频率正比于饱和磁通密度。
2)在工作频率范围有低的磁芯总损耗。在给定温升条件下,低的磁芯损耗将允许有高的通过功率。
附带的要求则还有高的居里点,高的电阻率,良好的机械强度等。